<u>Auftraggeber</u> Klima- und Energiefonds

Inhaltliche Ausarbeitung, Graphiken, Tabellen Zentralanstalt für Meteorologie und Geodynamik Umweltbundesamt Wien

umweltbundesamt[©]

Regionale Ansprechperson

Mag. Johannes Selinger klar@mistelbach.at

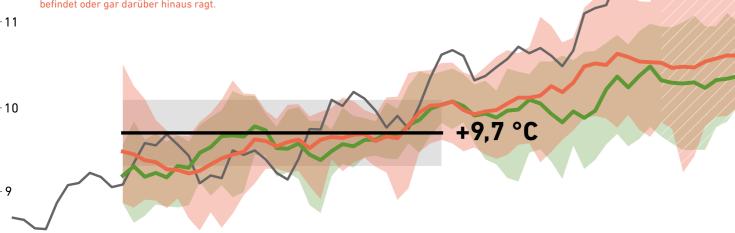
Datenquellen

SPARTACUS Gitterdatensatz der ZAMG. STARC-Impact Klimamodellsimulationen basierend auf EURO-CORDEX Klimamodellsimulationen aus ÖKS15. Dargestellt sind zwei "Repräsentative Konzentrationspfade" (RCP, nachzulesen im IPCC-AR5: www.ipcc.ch/report/ar5/syr). data.ccca.ac.at/group/oks15data.ccca.ac.at/group/starc-impact

Klimainfoblatt der KLAR! Regionen – Infos zum KLAR! Programm

Der Klimawandel trifft Österreichs Regionen. Anpassung an die Auswirkungen durch den Klimawandel ist notwendig, um auch langfristig die hohe Lebensqualität sichern zu können. Der Klima- und Energiefonds unterstützt Regionen mit dem Förderprogramm "Klimawandel-Anpassungsmodellregionen" (KLAR!) dabei, sich frühzeitig auf die Herausforderungen des Klimawandels einzustellen. So können Schäden vermindert und Chancen genutzt werden. Das Programm ist mit laufenden Aktivitäten auf Bundes- und Landesebene abgestimmt und leistet einen Beitrag zur Österreichischen Strategie zur Anpassung an den Klimawandel. Weitere Informationen unter: www.klimafonds.gv.at sowie klar-anpassungsregionen.at.

"Die Arbeit mit den KLAR! Regionen ist ein wahres Erfolgskonzept, das auch international Anerkennung findet. Wir helfen Regionen, sich auf die Herausforderungen der Klimakrise vorzubereiten und so zu Vorbildern für andere Regionen in Österreich und in der Welt zu werden." DI INGMAR HÖBARTH. GESCHÄFTSFÜHRER KLIMA- UND ENERGIEFONDS



gemessene

Temperatur

Die Grafik zeigt, dass die mittlere Jahrestemperatur in der KLAR! Mistelbach-Wolkersdorf im Weinviertel zwischen 1971 und 2000 bei 9,7 °C lag. Messdaten zeigen, dass die Temperatur in der Vergangenheit kontinuierlich stieg; das Jahr 2020 lag mit 11,5 °C bereits 1,8 °C über diesem langjährigen Mittelwert.

Laut des aktuellen 6. Arbeitsberichts des Weltklimarates (IPCC, AR6, 2021) schreitet der Klimawandel schnell voran und zum Teil stärker und schneller als in den Szenarien erwartet. Dieser Umstand zeigt sich zum Teil in den hier dargestellten Beobachtungsdaten zum Verlauf der jährlichen Mitteltemperatur, wenn sich die Beobachtungskurve am oberen Rand der Modellbandbreite befindet oder gar darüber hinaus ragt.

KLIMA IM WANDEL

KLAR!

Mistelbach-Wolkersdorf im Weinviertel

Die Grafik am Titelblatt zeigt die mögliche Entwicklung der jährlichen Mitteltemperatur bis zum Ende des 21. Jahrhunderts. Ohne Anstrengungen im Klimaschutz befinden wir uns auf dem roten Pfad, der für die Region einen weiteren Temperaturanstieg um etwa 4 °C bedeutet. Mit ambitioniertem Klimaschutz schlagen wir den grünen Pfad ein, der die weitere Erwärmung langfristig auf etwa 1 °C begrenzt.

1990

2010

2040

2090

ÜBERBLICK UND ZUKÜNFTIGE KLIMA-ÄNDERUNG IN DER REGION

Das Klima unserer Erde ändert sich, was auch in der KLAR! Mistelbach-Wolkersdorf im Weinviertel zunehmend zu spüren ist. Neue Risiken treten in dieser stark durch das pannonisch-kontinentale Klima, mit trocken-kalten Wintern und trocken-warmen Sommern beeinflussten Region auf. Dieses Klimainfoblatt zeigt, wie der Klimawandel in der Region voranschreiten wird.

Der von Klimamodellen am besten abgebildete Parameter für den Klimawandel ist die Temperatur, deren Verlauf sich in den einzelnen Szenarien bis 2050 nicht markant unterscheidet. Der Grund dafür ist, dass das Klima träge reagiert und auch große Anstrengungen im Klimaschutz erst 20 bis 30 Jahre später in den Daten sichtbar werden. Somit treten markante Unterschiede erst ab etwa 2050 und später auf.

Der Parameter Niederschlag ist generell mit hohen Schwankungen behaftet und wird auch von Klimamodellen nicht so gut wiedergegeben wie die Temperatur. Daher lassen sich für den Niederschlag im Allgemeinen weniger zuverlässige Aussagen treffen.

Der Klimawandel in der Region zeigt sich anhand unterschiedlicher Indikatoren. Im Nachfolgenden werden einige speziell ausgewählte Indikatoren anhand von 30-jährigen Mittelwerten für zwei ausgewählte Szenarien dargestellt. Einzelne Jahre können stark vom Mittelwert abweichen, daher wird zusätzlich die mögliche Bandbreite der Änderung angegeben. Diese Darstellung zeigt Durchschnittswerte, aber keine Extreme!

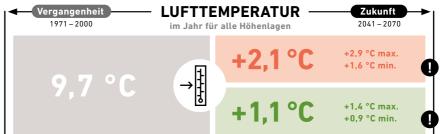
Szenarien

Klimamodellsimulationen zur Abbildung möglicher Zukunftspfade. Die hier dargestellten Szenarien sind:

- Kein Klimaschutz:
 "worst-case" Szenario (RCP 8.5)
- Ambitionierter Klimaschutz: "Paris Ziel" (RCP 2.6)
- Statistisch signifikante Änderung (beträchtliche klimatische Änderung, muss aber in der Region nicht unbedingt zu Herausforderungen führen)

Einschätzung von Fachleuten

Orange markierte Bereiche beschreiben Indikatoren, deren Änderung in der Region zu Herausforderungen führen.


Blau markierte Bereiche beschreiben Indikatoren, deren Änderungen in der Region Chancen bieten können.

Vergangenheit

Referenzwert aus Beobachtungsdatensätzen als Mittelwert für den Zeitraum 1971 – 2000.

Änderung für die Klimazukunft

Mittlere Änderung für die einzelnen Klimamodellsimulationen für die Zukunft (2041 – 2070) gegenüber der Vergangenheit (1971 – 2000). Dieser Wert muss zu jenem der Vergangenheit hinzugefügt werden. Die Beschreibung der dargestellten Indikatoren bezieht sich ausschließlich auf das "worst-case" Szenario.

Das bereits aus den letzten Jahren spürbar hohe Temperaturniveau wird auch in den kommenden Jahrzehnten um 0,3 bis 0,4 Grad Celsius pro Jahrzehnt ansteigen. Dadurch entstehen neue Herausforderungen für Menschen, Tiere und Pflanzen. Wird das Paris-Ziel erreicht, stabilisiert sich die Temperatur ab 2050, im "worst-case" Szenario steigt sie ungebremst weiter.

Mit dem höheren Temperaturniveau steigt auch die Anzahl der Hitzetage im Sommer an, wird sich im Mittel etwa verdoppeln und führt somit zu einer markanten Erhöhung der Hitzebelastung. In Verbindung mit der ebenfalls markanten Zunahme an Tropennächten wird das menschliche Wohlbefinden künftig im Sommer vor Herausforderungen gestellt, ebenso wie jenes der Tier- und Pflanzenwelt.

Trockenes, nicht zu heißes Wander- und Radfahrwetter im Sommer wird in Zukunft weniger werden. Dies ist vor allem dem Temperaturanstieg geschuldet und weniger der Veränderung der Anzahl der Niederschlagstage. Das Naherholung und der Tourismus werden somit vor Herausforderungen gestellt.

^{*} Tageshöchsttemperatur liegt zwischen +15 °C und +25 °C, Tagesniederschlagssumme beträgt weniger als 1 mm

Durch den um etwa 2 Wochen früheren Beginn der Vegetationsperiode bleibt die Gefahr von Schäden in der Landwirtschaft weiterhin bestehen. Markante Kaltlufteinbrüche zur Zeit der beginnenden Vegetation und bis zum Ende des Frühlings wird es auch in Zukunft von Zeit zu Zeit geben.

mittlere Lufttemperatur

Der Trockenheitsindex bildet vereinfacht den Bodenwasserhaushalt ab. Als Referenz in der Vergangenheit dient ein Dürreereignis, welches im statistischen Sinne nur alle 10 Jahre vorkommt. Zukünftig werden derartige Dürreereignisse alle 4 Jahre auftreten und somit deutlich häufiger zu erwarten sein. Das stellt besonders die Landund Forstwirtschaft vor Herausforderungen.

Extreme Tagesniederschläge werden intensiver. Dies betrifft sowohl großflächige Starkregenereignisse als auch Gewitter. Deren negative Folgen wie Hagel, Hangwässer, Bodenerosion, Überschwemmungen und Windwurf werden voraussichtlich häufiger.

^{*} Lufttemperatur sinkt unter 0 °C in der Vegetationsperiode

^{*} größte Tagesniederschlagssumme